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The following paper describes the effect of the introduced vibration isolation on the operation
of a hydraulic valve. The method of transmitting the external force to the valve control
element and examples of vibration sources are presented. The balance of forces acting on
the valve spool and the flow intensity in the tested hydraulic system are determined. The
assumptions are simplified and discussed in detail. On their basis, numerical simulations
have been carried out and verified by experimental tests. The paper ends with brief conclu-
sions.
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1. Introduction

A specific feature of the operation of hydraulic systems is its dependence on external conditions
and the above-mentioned parameters. A working hydraulic element, such as a valve controlling
the flow direction or pressure, is constantly subjected to complex forces of various origins, e.g.
external vibrations from the ground, pressure pulsation. It is important to be aware that by
applying an input to any point in a hydraulic system, it is transferred to components of this
system through viscous or elastic elements. The effects of this depend on the place of the input,
its amplitude, frequency and physical characteristics of the elements transmitting these forces as
well as configuration of this system. An element of the hydraulic system, the main part of which
is a control element in the form of a slide, ball, cone, or plate, is subjected to variable loads
resulting from changes in operating parameters: the medium flow rate, pressure due to uneven
performance of the displacement pump or variable external load. Examples are presented in
(Stryczek, 2005). These loads are often stochastic and, in particular cases, they may be harmonic.
In general, forces acting on a hydraulic valve can be divided into deliberate and disruptive ones.
The group of targeted inputs includes signals that control the operation of valves located in
the structure of the control or regulation system. Exemplary values are shown in (Glanowski,
2001; Tomasiak, 2001). A group of excitations disturbing the operation of the valves includes
vibrations acting on the valve as described in (Stosiak, 2006). A significant influence of external
signals on the operation of modern proportional elements or hydraulic micro-valves should be
expected, because the disturbance forces in these elements may have the same magnitude as the
control forces. This can lead to many unfavorable effects, e.g. loss of stability, lack of positioning
accuracy, damage to seals, increased noise (Cempel, 1989; Pawlaczyk-Łuszczyńska et al., 2001)
and excitation and transmission of vibrations through flexible hydraulic pipes with non-linear
characteristics (Bogdevičius et al., 2021). A strong trend in the development of the proportional
control technology can be noted in various types of hydraulic elements was confirmed by the
examples in (Osiecki, 1998; Addison et al., 2017; Pizon, 1995; Tomasiak, 2001a,b), which have
been replacing the conventional elements used so far, thus providing new possibilities in terms
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of the response time to the control signal and frequency bands (Kudźma et al., 2014) as well
as entirely new opportunities with respect to the implementation of programmed work cycles,
reduction of dynamic surpluses or mitigation of transient states.

Most generally, the complex problem of vibration transmission by a machine or device can
be divided into three basic, interrelated stages:

• sources of vibrations,
• vibration transmission paths,
• vibration effects.

Propulsion systems, such as an internal combustion engine, which performs a periodic, vari-
able duty cycle, are important sources of vibrations. A working hydraulic system is also a source
of mechanical vibrations caused mainly by pressure shock changes and the periodic operating
principle of a displacement pump (Kollek et al., 2014). The vibrations generated in this way
are characterized by different frequencies, so their transmission paths are different (Fiebig and
Wróbel, 2017).

2. Reduction of the influence of external mechanical vibrations on a hydraulic

valve

The introduction of a material with elastic dissipative properties suitable for reduction of trans-
mitted amplitudes and the frequency range of vibrations should reduce the vibration amplitudes
of the valve control elements. A case was analyzed in which in order to extend the frequency
range of effective vibration isolation, a hydraulic distributor was mounted in a special holder and
supported on both sides by springs with known characteristics. The spring packs were installed
between the distributor body and the handle – as shown in Fig. 1. Effective vibration isolation
is that for which the ratio of the vibration acceleration amplitude of the distributor body to the
amplitude of forced vibration acceleration is lower than one.

Fig. 1. Handle of the second valve: 1 – hydraulic valve (distributor), 2 – handle base, 3 – spring
pre-deflection screws, 4 – springs, 5 – securing catches

The handle design shows that the valve mounted in it is tied with springs of the equivalent
stiffness kz , sliding along the handle base (Fig. 1) and rubbing against it according to the dry
friction model. The valve is supported by the springs on both sides. The diagram of the hydraulic
system used with the distributor is shown in Fig. 2 (the periodic kinematic excitation is described
with a harmonic function),
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Fig. 2. Hydraulic diagram of the tested element system: 1 – feed pump, 2 – maximum valve, 3 – tested
element (proportional valve 4WRE6E08-12/24Z4/M), 4 – adjustable throttle valve

For a two-mass system, the model of a proportional valve operating in the hydraulic system
shown in Fig. 3 is presented as a system of four equations

m1ẍsu + πdt
l

h
µ(ẋsu − ẋk0) + 0.72

1√
ξ
2ss
(xsu − xp)2
xm

(p1 − p2) + ksz(xsu − xk0) = FM

Qp −
3
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(xsu − xp)2
xm

√
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(p1 − p2)− ap1p1 − kk1ṗ1 = 0

Qp − ap1p1 − kk1ṗ1 − kk2ṗ2 − Cq1Aa
√

2p2
ρ
= 0

m2ẍk0 + ksz(xk0 − xsu) + cs1(ẋk0 − ẋsu) + kz(x0s + xk0 − w)
+m2µ2g[1−H(l0 − |xk0 − w|)] sgn (ẋk0 − ẇ) + sgn (ẋk0 − ẇ)m2µig = 0

(2.1)

where g is standard gravity [m/s2], H – is the Heaviside function [–], cs1 – is damping in the
slider-sleeve pair [Ns/m], p1 – is pressure upstream of the distributor [Pa], p2 – is pressure
downstream of the distributor [Pa], ss – is the maximum gap width [m], w – is the vibration
amplitude of the excitation [m], xm – is gap length [m], xp – is mutual displacement of the spool
and body edges [m], x0s – is pre-deflection of springs [m], xsu – is piston spool displacement [m],
xk0 – is distributor body displacement [m], FM – force that comes from the controls [N], ksz –
stiffness is replaced by the springs securing the slider [N/m].

The first equation describes the balance of forces acting on the slider setting in motion the
vibrating body, which is associated with the centering springs and friction in the slider pair.
The second and third equations describe the balance of the flow rate in the hydraulic system
operating without the maximum valve. The fourth equation describes the forces acting on the
valve body in the case under study. It was assumed that after the l0 clearance is removed,
the valve body rubs against the securing catches. Model (2.1) was built with the simplifying
assumptions that:

• the working fluid does not change its properties,
• Coulomb friction in the slide pair is ignored,
• cooperation between the valve body and the handle represents Coulomb friction,
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Fig. 3. The “black box” method in valve vibration

• after the clearance is removed, the cooperation between the valve body and securing han-
dles represents Coulomb friction,

• spring characteristics are linear and described by the stiffness k,
• the description of the hydraulic system is based on a model with concentrated parameters,
• the model does not take into account the influence of pipes on valve vibration.

The list of the most important symbols in the system of equations (2.1) is presented in
Table 1.

Table 1. List of the most important symbols with values

Parameter Symbol Value SI unit

Leakage coefficient apl 2.5 · 10−11 m4s/kg

Area of the throttle valve gap Aa 1.5 · 10−6 m2

Equivalent stiffness of the spool centering
k1 4884 N/m

springs

Equivalent stiffness of the securing springs kz 86 000 N/m

Capacitance ckl 0.62 · 10−12 m5/N

Throttle valve flow rate Cql 0.6 –

Piston diameter dt 12 · 10−3 m

Spool-sleeve pair gap thickness h 1.5 · 10−7 m

Piston length l 36.6 · 10−3 m

Gap between the valve body and the
l0 0.2 · 10−3 m

securing catches

Piston spool weight and 1/3 of spring weight m1 0.0344 kg

Distributor body weight m2 4.5 kg

Pressure in the fill line pz 0 Pa

Calculated pump capacity Qp 1 · 10−4 m3/s

Friction coefficient of the valve body
µ2 0.1 –

against the securing catches

Friction coefficient of the valve body
µi 0.12 –

against the catch base

Service fluid density ρ 900 kg/m3

Fluid dynamic viscosity µ 0.22 Ns/m

Local loss coefficient ξ 1.78 –

The solution of model (2.1) for the equivalent stiffness kz = 86000 N/m is presented in
Fig. 4 as the ratio of the amplitude of vibration acceleration of the proportional distributor
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body a2 to the amplitude of forced vibration acceleration a0, known as the “transfer function”.
The kinematic external excitation is described as a harmonic function w(t) = w(0(f)) sin(2πft),
where w0(f) is the amplitude [m] of the excitation corresponding to the frequency of the exci-
tation, f is the frequency of the kinematic excitation [Hz] and t is time [s]. As for the frequency
f = 10Hz, the amplitude is w0(10) = 3.76 · 10−3m for f = 15Hz, w0(15) = 2.25 · 10−3m; for
f = 20Hz, w0(20) = 1.33·10−3 m; for f = 25Hz, w0(25) = 0.84·10−3m; for f = 30Hz, w0(30) =
0.48 · 10−3m; for f = 35Hz, w0(35) = 0.41 · 10−3m; for f = 40Hz, w0(40) = 0.37 · 10−3m; for
f = 45Hz, w0(45) = 0.27 · 10−3m; for f = 50Hz, w0(50) = 0.21 · 10−3m; for f = 55Hz,
w0(55) = 0.15 · 10−3m; for f = 60Hz, w0(60) = 0.052 · 10−3m.

Fig. 4. The vibration acceleration amplitude of the proportional distributor body a2 as a function of the
vibration acceleration amplitude a0 for f from 10 to 60Hz

The analysis of the simulation results shows a significant increase of the body vibrations
amplitude at a frequency of about 20Hz. This is caused by the occurrence of resonance as the
mass of the vibrating valve is about 4.5 kg, while the equivalent spring stiffness of the handle is
kz = 86000 N/m, which means that the resonance occurs at a frequency of approximately 22Hz.
Thus, in the range of 10-30Hz, an increase in the amplitude of acceleration of the distributor
body is observed – vibration ineffective.

3. Searching for effective vibration isolation solutions

The goal was to propose such isolation of the valve that will widen the insulation zone and reduce
the resonance zone. The “black box” method was used for this problem as shown in Fig. 5.
If a material with linear characteristics of stiffness kz and damping c2 described as

kz(xk0 − w) + c2(ẋk0 − ẇ)2 (3.1)

is introduced between the valve body and the vibrating holder, and assuming that the clearance
l0 is not removed, the fourth equation in the system of equations (2.1) can have the following
form

m2ẍk0 + ksz(xk0 − xsu) + cs1(ẋk0 − ẋsu) + kz(x0s + xk0 − w) + c2(ẋk0 − ẇ)
+ sgn (ẋk0 − ẇ)m2µig = 0

(3.2)

After the parameters assume the values of kz = 20000N/m and c2 = 50Ns/m and then
c2 = 250Ns/m, it is possible to assess the influence of the damping change on the effectiveness
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Fig. 5. The “black box” method in valve vibration isolation

of the valve body isolation from the vibrating ground. Similarly, the influence of the stiffness
change on the effectiveness of isolating the valve body from the vibrating ground can be assessed
by using kz = 120 000 N/m. Figure 6 shows the values of the “transfer function” understood as
the ratio of the amplitude of acceleration of the valve body vibrations a2 to the amplitude of
acceleration of the forced vibration a0 for different damping values c2.

Fig. 6. The vibration acceleration amplitude of the proportional distributor body a2 related to the
amplitude of forced vibration acceleration a0 for f from 10 to 60Hz

The analysis of Figs. 4 and 6 shows that by using a vibration isolator with linear character-
istics and different values of the kz and c2 parameters, it is possible to limit the range of the
resonance area and increase the range of isolation, i.e. the area for the ratio a2/a0 < 1. Further
improvement of the isolation efficiency of the valve body from the vibrating substrate can be
sought by using insulators with non-linear characteristics.

If a material with nonlinear stiffness kz(xk0 −w)2 and damping proportional to the relative
velocity c2(ẋk0 − ẇ) is inserted between the valve body and the vibrating base, and assuming
that the clearance l0 is not removed, the fourth equation in the system of equations (2.1) can
take the following form

m2ẍk0 + ksz(xk0 − xsu) + cs1(ẋk0 − ẋsu) + kz(x0s + xk0 − w)2 + c2(ẋk0 − ẇ)
+ sgn (ẋk0 − ẇ)m2µig = 0

(3.3)

By supplementing the set of parameters with kz = 20000N/m and c2 = 50Ns/m or, for example,
in order to calculate the share of damping in the process of reducing the vibrations of the valve
body c2 = 250Ns/m, we can obtain a numerical solution representing the vibrations of the
valve. Figure 7 presents the values of the “transfer function” understood as the ratio of the
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amplitude of acceleration of the valve body vibrations a2 to the amplitude of forced vibration
acceleration a0.

Fig. 7. The vibration acceleration amplitude of the proportional distributor body a2 as a function of the
amplitude of forced vibration acceleration a0 for f from 10 to 60Hz

In this case, it is also observed that for a given stiffness, an increase in the damping value
causes an increase in the value of the “transfer function” understood as the ratio of a2 to a0.
However, unlike the case where the material with linear stiffness and damping characteristics is
used, here the value of the “transfer function” is less than one over the entire given frequency
range.

If a vibration damper with nonlinear damping and linear stiffness (kz = 20000 N/m)
kz(xk0 − w) + c2(ẋk0 − ẇ)2 is used to isolate vibrations from the base, the ratio of the vi-
bration amplitude of the distributor body a2 to the vibration amplitude of the base a0 for
selected excitation frequencies is as shown in Fig. 8.

Fig. 8. The vibration acceleration amplitude of the proportional distributor body a2 as a function of the
amplitude of forced vibration acceleration a0 for f from 10 to 60Hz

Also a widening of the effective range of vibration isolation is observed for such an isolator
model. Additionally, the spool frequency of a typical single-stage spool distributor is particularly
revelant in this area.
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4. Experimental verification of the possibility of reducing vibrations of a

hydraulic valve by means of spring packs

In order to verify the conclusions resulting from theoretical discussion and from simulation
models and to test technical feasibility of the proposed solutions, experimental tests were carried
out. The Mannesmann-Rexroth 4WRE6E08-12/24Z4/M proportional distributor was mounted
in a special holder II (Fig. 2), as shown in the photo in Fig. 9. The proportional valve was placed
in the special holder II (Fig. 2) and supported on both sides by springs so that there were two
springs connected in parallel on each side of the valve. This parallel arrangement of the springs
had the equivalent stiffness of kz = 86000N/m, and the initial deflection was set at 2mm. The
summary results are presented in Fig. 10.

Fig. 9. Proportional distributor mounted in special holder II during experimental tests and supported
on both sides by springs: 1 – hydraulic distributor, 2 – vibrating special holder II,

3 – set of four springs

Fig. 10. The vibration acceleration amplitude of the proportional distributor body a2 as a function the
amplitude of forced vibration acceleration a0 for f from 10 to 60Hz

The applied set of springs and the handle reduced the amplitudes of accelerating vibrations
of the valve body in the frequency range of 25-60 Hz.

5. Application of analytical approximate methods to the analysis of nonlinear

valve vibration reduction systems

In engineering practice, the analysis of vibrating systems is often based on consideration of linear
systems. However, more detailed and accurate results can be obtained by taking into account
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non-linearities that sometimes occur. This way the effect of nonlinearities on the behavior of
the system can also be assessed. In mechanical systems, elastic or damping elements may be the
sources of nonlinearity. In some cases, mass of a system is variable. Damping may be proportional
not only to the velocity of the first power but also to the square of it v2. Also, the spring rate
constant can change with deflection of the spring.
In the vast of rich specialist literature, only a few authors (Balachandran and Magrab,

2009; Kulisiewicz et al., 2001; Bocian and Kulisiewicz, 2014; Harris and Piersol, 2002; Ibrachim,
2008; MacDuff and Curreri, 1960; Gao et al., 2021; Guo et al., 2019; Bocian, 2019) present a
broad analysis of vibrations of nonlinear systems. Therefore in this Section, using the reasoning
described extensively in the mentioned literature, we will present a selected model with either
non-linear damping or non-linear springs.
An important feature of the system related to nonlinearity of the spring is the variaton

of natural frequency with the amplitude. This differs from systems with nonlinear damping,
where changes in the natural frequency due to damping changes are very small. In systems with
nonlinear springs, even a slight change in the amplitude may cause significant changes in the
value of the natural frequency. In systems with non-linear springs, there are also harmonic and
sub-harmonic deflection components. When analyzing a vibrating system with nonlinear springs,
we can obtain harmonic components of motion with values greater or lower than the frequency
of the excitation force.
Schwesinger’s method (MacDuff and Curreri, 1960) is useful for analyzing vibrating systems

with nonlinearities. It is an approximate method based on a one-member approximation that
allows us to consider vibrations of systems with variable mass, non-linear spring or non-linear
damping.
In this method, the vibration is assumed to be harmonic, and the displacement can be

described by the following function

x(t) = x0 sin(ωt) (5.1)

This assumption is responsible for inaccuracy within this method, because only one harmonic is
considered, without harmonics of higher orders. The starting point is to construct a differential
equation of forces acting on a body with massm. The author of the method introduces the notion
of an equivalent force as a disturbing force acting on mass m. This force would be equal to zero
for a linear system if the assumption of simple harmonic motion was true. For a nonlinear system,
there are still harmonics of higher orders in the system response, so, in general, the displacement
should be described as follows

x(t) = x0 sin(ωt) + x02 sin(2ωt) + x03 sin(3ωt) + · · · + x0n sin(nωt) (5.2)

where ω is the angular frequency [rad/s].
By applying only the first term in the sum given by Eq. (5.2), the existing forces caused

by the harmonics of higher orders are ignored. The harmonics of higher orders acting on the
mass combine into one force, expressed as the equivalent force. Schwesinger’s method seeks
the minimum of the integral that he defines from the square of the equivalent force that he
introduces, takes the value of the amplitude x0 and identifies the force that must satisfy the
condition for the integral to reach the minimum. The following values of the force components
F1 and F2 are obtained

F1 =
1

π

2π
∫

0

[

F (x)−mω2x0 sin(ωt) +
dm

dx
ω2x20 cos

2(ωt)
]

sin(ωt) d(ωt)

F2 =
1

π

2π
∫

0

F (ẋ) cos(ωt) d(ωt)

(5.3)
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whereas the overall force is expressed in the equation

F 2 = F 21 + F
2
2 (5.4)

and the phase shift is described with the equation

Φ = arctan
F2
F1

(5.5)

After the transformations based on equation (5.4), the characteristic equation is obtained, from
which – after assuming the vibration amplitude values – we can calculate the corresponding
frequencies. In this way, we obtain a curve showing characteristic steady-state vibrations of the
body with mass m supported by a system of springs with nonlinear characteristics.

The method is described in detail by MacDuff and Curreri (1960) and others, so here we
only outline its main ideas and reasoning.

By using this method, it is possible to evaluate the effect of a nonlinear system on vibration
reduction of a distributor body excited by a harmonic force. If it is assumed that the nonlinear
stiffness of the isolating component is expressed with the equation

F (x) = k1x+ k3x
3 (5.6)

where k1 and k3 are the constants of the spring in [N/m] and [N/m
3], respectively, and the

damping is proportional to the velocity

F (ẋ) = cẋ (5.7)

where c is the damping constant in [kg/s], then equations (5.3) can be written as follows

F1 =
1

π

2π
∫

0

[

c1x0 sin(ωt) + c3x
3
0 sin

3(ωt)−mx0ω2 sin(ωt)
]

sin(ωt) d(ωt)

F2 =
1

π

2π
∫

0

kx0ω cos
2(ωt) d(ωt)

(5.8)

Applying Schwesinger’s method and assuming the system parameters m = 4.5 kg,
k1 = 86000N/m, k3 = 8600 000 N/m

3, the amplitude of the harmonic excitation force of
F0 = 90N, and c1 = 80 kg/s, we can obtain the characteristic equation of steady-state vi-
brations of the valve body. For the assumed value of the vibration amplitude, the frequency
values are calculated according to the above method and are given in Table 2.

Figure 11 shows the steady-state vibration amplitude of a nonlinear vibration isolation sys-
tem and, for comparison, a linear system with k = 86000 N/m and c = 160 kg/s parameters.
The steady-state vibration amplitude for a linear system can be calculated from the following
equation (Goliński, 1979)

x0 =
F0
k

1
√

[

1−
(

ω
ω0

)2]2
+
(

cω
mω2
0

)2
(5.9)

As we can see, the damping limits the amplitude in the non-linear system, but its values are
much higher than in the linear system. The diagram in Fig. 11 shows that in the nonlinear model
(with nonlinear stiffness), for a given harmonic excitation with a constant amplitude (force) and
with a change in the excitation frequency (deviation from resonance), there is a sharp decrease
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Table 2. Steady-state vibration amplitudes in the nonlinear system and frequencies calculated
according to Schwesinger’s method

x0 [m] f1 [Hz] f2 [Hz]

0.0081 21.93 22

0.0078 21.54 22.38

0.007 21.01 22.78

0.006 20.6 23.20

0.005 20.25 23.68

0.004 19.24 24.31

0.003 17.98 25.25

0.002 15.32 26.94

0.0015 12.17 28.5

0.0011 4.88 30.6

Fig. 11. Steady-state vibration amplitude of the system with the nonlinear stiffness characteristic and
linear damping, and vibration amplitude of the system with the linear stiffness characteristic and

linear damping

in the amplitude of steady vibrations, e.g. of the valve body, which is much higher than in the
linear model.

Another interesting and applicable method is the concept of viscous damping replacement.
The analysis of systems with nonlinear damping and linear stiffness can be carried out using
the method based on this concept. In this method, losses caused by dry friction, damping
proportional to v2 and other forms of damping are replaced by the so-called equivalent viscous
damping, which has the same effect on the behavior of the system (Harris and Piersol, 2002;
MacDuff and Curreri, 1960). Hence this method leads to linearization of the equation describing
the system, because it converts the nonlinear differential equation into a linear one. This method
assumes that the body is acted on by a harmonic force.

If it is assumed that the resistance in the damper can be described by

F (ẏ) = cẏ = −y0cω sin(ωt) (5.10)

where ẏ is the time derivative of the relative displacement y = y0 cos(ωt), then we can calculate
the work of the force per period
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WT = cy
2
0ω

2π
∫

0

sin2(ωt) d(ωt) = cy20ωπ (5.11)

where WT is the work per period.

Moreover, the general formula for work per period can be presented as (MacDuff and Curreri,
1960)

WT =

2π
∫

0

F (ẏ)ẏ dt (5.12)

The equivalent damping coefficient Ceq in a non-viscous damper is obtained by comparing ex-
pressions (5.11) and (5.12)

Ceq =
1

y20ωπ

2π
∫

0

F (ẏ)ẏ dt (5.13)

This is an approximation method and has limited applicability, because among others, the motion
is assumed to be harmonic. It can be used in cases where damping is not large enough to cause
distortion of the motion sinusoid. However, using this method and bearing in mind its limitations
can lead to generalization that for many types of nonlinear dampings the curve characterizing
the steady-state vibration amplitude has a smoother course (MacDuff and Curreri, 1960). This
is also true for a vibration system with one degree of freedom for a linear spring connected in
parallel and damping that is proportional to the square of velocity. Assuming that the vibrating
mass m is connected to the vibrating base by a linear spring with stiffness c and a damper whose
resistance can be written as

F (ẏ) = λẏ2 (5.14)

where λ is a constant, and ẏ is the relative velocity, after writing the relative displacement of
mass m as

y = y0 cos(ωt) (5.15)

the work per one period can be calculated for the damper, whose resistance is given by equation
(5.13)

WT = 2.66ω
2y30λ (5.16)

By comparing the work per period for damping proportional to the square of relative velocity
with equation (5.11), the equivalent damping coefficient is obtained

Ceq = 0.8488y0ωλ (5.17)

Then, substituting the calculated form of the equivalent damping coefficient for the known form
of the dimensionless damping coefficient γ yields

γ =
keq
2mω0

= 0.4244y0B
ω

ω0
(5.18)

where B = λ/m.
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The equation for the coefficient γ is incorporated into the equation describing motion of a
system with one degree of freedom, linear stiffness and viscous damping

y0
w0
=

(

ω
ω0

)2

√

(

1− ω2
ω2
0

)2
+
(

2γ ω
ω0

)2
(5.19)

thus yielding the equation

y0
w0
=

(

ω
ω0

)2

√

(

1− ω2
ω2
0

)2
+ 0.72

(

y0B
ω2

ω2
0

)2
(5.20)

The substitution z = y20 can lead to the form shown below

0.72B2
( ω

ω0

)4
z2 +

[

1−
( ω

ω0

)2]2
z −
( ω

ω0

)4
w20 = 0 (5.21)

By solving the above equation with respect to y0 and parameterizing it, we can obtain the
final form of the relationship between the relative vibration amplitude and the frequency ratio.
Detailed solutions are given in (MacDuff and Curreri, 1960) and others. The roots of Eq. (5.21),
assuming a positive discriminant, are the numbers z1 and z2, satisfying the equations

z1,2 = −
0.694

B2
− 0.694
(

ω
ω0

)4
B2
+
1.389
(

ω
ω0

)2
B2
±
0.694

√

[

1−
(

ω
ω0

)2]4
+ 2.88

(

ω
ω0

)8
B2w20

(

ω
ω0

)4
B4

(5.22)

Equation (5.21), given the substitution, and equation (5.22) show that the relative motion in
this case does not run linearly with respect to the displacement w0.

6. Conclusions

Both the analysis and Figs. 4 and 6 suggest that it is possible to select parameters of stiffness and
damping for linear models of vibration dampers that will provide effective vibration isolation in
the analyzed excitation frequency range. A further increase in vibration isolation efficiency can
be achieved by introducing materials with nonlinear characteristics as shown in Figs. 7 and 8.
Energy dissipation increases as the stiffness of the vibration isolation system decreases. Given

the above discussion, the following generalized conclusions can be drawn about the efficiency of
the vibration isolation system:

a) If ω ≪ ω0, given the excitation force, the amplitude ratio of the force transmitted to the
base to the excitation force amplitude is close to one and, similarly, given the kinematic
excitation, the ratio of the steady-state vibration amplitude to the excitation amplitude is
also close to one, then using vibration dampers is no longer effective.

b) If ω ≈ ω0, the amplitude ratio of the force transmitted to the base to the amplitude of
the excitation force increases and reaches significant values at low damping, the spring
support should prevent operation in this range, since the forces transmitted by the system
may have larger amplitudes than the excitation forces or absolute displacements whose
amplitude is larger than the displacement from excitation.

c) If ω/ω0 >
√
2, the vibration isolation is efficient. The lower the damping, the greater the

vibration isolation efficiency.
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d) In the resonance range, the amplification factor Ta can be reduced by applying high damp-
ing. Therefore, if a machine or device equipped with a hydraulic valve operates for a longer
period of time in the resonance range, heavy damping materials should be used in order
to prevent excessive vibration amplitudes of the valve body.

The linear and nonlinear mathematical models of vibration isolation discussed in this paper can
be used to select appropriate features of materials in terms of the isolation efficiency.
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